viernes, 21 de febrero de 2020

SISTEMA DE ECUACIONES

1. Método de Sustitución

El método de sustitución consiste en aislar en una ecuación una de las dos incógnitas para sustituirla en la otra ecuación.
Este método es aconsejable cuando una de las incógnitas tiene coeficiente 1.

EJEMPLO 1 

 Resolución de 6 sistemas de ecuaciones utilizando los métodos básicos: sustitución, igualación y reducción. Sistemas de ecuaciones para secundaria. ESO. Álgebra básica.

La solución del sistema es: 

Resolución de 6 sistemas de ecuaciones utilizando los métodos básicos: sustitución, igualación y reducción. Sistemas de ecuaciones para secundaria. ESO. Álgebra básica.


2. Método de Reducción

El método de reducción consiste en sumar (o restar) las ecuaciones del sistema para eliminar una de las incógnitas.
Este método es aconsejable cuando una misma incógnita tiene en ambas ecuaciones el mismo coeficiente (restamos las ecuaciones) o los coeficientes son iguales pero con signo opuesto (sumamos las ecuaciones).

Ejemplo 2

Resolución de 6 sistemas de ecuaciones utilizando los métodos básicos: sustitución, igualación y reducción. Sistemas de ecuaciones para secundaria. ESO. Álgebra básica.
La solución del sistema es

Resolución de 6 sistemas de ecuaciones utilizando los métodos básicos: sustitución, igualación y reducción. Sistemas de ecuaciones para secundaria. ESO. Álgebra básica.


3. Método de Igualación

El método de igualación consiste en aislar una incógnita en las dos ecuaciones para igualarlas.
Este método es aconsejable cuando una misma incógnita es fácil de aislar en ambas ecuaciones.

La solución del sistema es
Resolución de 6 sistemas de ecuaciones utilizando los métodos básicos: sustitución, igualación y reducción. Sistemas de ecuaciones para secundaria. ESO. Álgebra básica.

No hay comentarios:

Publicar un comentario